Science And Technology In World History An Introduction Pdf

  • and pdf
  • Wednesday, May 5, 2021 10:32:32 PM
  • 1 comment
science and technology in world history an introduction pdf

File Name: science and technology in world history an introduction .zip
Size: 1662Kb
Published: 06.05.2021

Ancient Chinese scientists and engineers made significant scientific innovations, findings and technological advances across various scientific disciplines including the natural sciences , engineering , medicine , military technology , mathematics , geology and astronomy.

The technological history of the Middle Ages was one of slow but substantial development. In the succeeding period the tempo of change increased markedly and was associated with profound social, political, religious, and intellectual upheavals in western Europe.

Search this site. Doty, MD. Die Rose auf dem Weltmarkt by -. Book by Markus Geffers.

Navigation

The technological history of the Middle Ages was one of slow but substantial development. In the succeeding period the tempo of change increased markedly and was associated with profound social, political, religious, and intellectual upheavals in western Europe. The emergence of the nation-state, the cleavage of the Christian church by the Protestant Reformation, the Renaissance and its accompanying scientific revolution, and the overseas expansion of European states all had interactions with developing technology.

This expansion became possible after the advance in naval technology opened up the ocean routes to Western navigators. The conversion of voyages of discovery into imperialism and colonization was made possible by the new firepower. The combination of light, maneuverable ships with the firepower of iron cannon gave European adventurers a decisive advantage, enhanced by other technological assets.

The Reformation , not itself a factor of major significance to the history of technology, nevertheless had interactions with it; the capacity of the new printing presses to disseminate all points of view contributed to the religious upheavals, while the intellectual ferment provoked by the Reformation resulted in a rigorous assertion of the vocational character of work and thus stimulated industrial and commercial activity and technological innovation. It is an indication of the nature of this encouragement that so many of the inventors and scientists of the period were Calvinists, Puritans, and, in England, Dissenters.

The Renaissance had more obviously technological content than the Reformation. Even while they looked back to Classical models, Renaissance men looked for ways of improving upon them. This attitude is outstandingly represented in the genius of Leonardo da Vinci.

As an artist of original perception he was recognized by his contemporaries, but some of his most novel work is recorded in his notebooks and was virtually unknown in his own time.

This included ingenious designs for submarines, airplanes, and helicopters and drawings of elaborate trains of gears and of the patterns of flow in liquids. The early 16th century was not yet ready for these novelties: they met no specific social need, and the resources necessary for their development were not available.

An often overlooked aspect of the Renaissance is the scientific revolution that accompanied it. As with the term Renaissance itself, the concept is complex, having to do with intellectual liberation from the ancient world. For centuries the authority of Aristotle in dynamics , of Ptolemy in astronomy, and of Galen in medicine had been taken for granted.

Beginning in the 16th century their authority was challenged and overthrown, and scientists set out by observation and experiment to establish new explanatory models of the natural world. One distinctive characteristic of these models was that they were tentative, never receiving the authoritarian prestige long accorded to the ancient masters.

Since this fundamental shift of emphasis, science has been committed to a progressive, forward-looking attitude and has come increasingly to seek practical applications for scientific research. Technology performed a service for science in this revolution by providing it with instruments that greatly enhanced its powers. The use of the telescope by Galileo to observe the moons of Jupiter was a dramatic example of this service, but the telescope was only one of many tools and instruments that proved valuable in navigation, mapmaking , and laboratory experiments.

More significant were the services of the new sciences to technology, and the most important of these was the theoretical preparation for the invention of the steam engine. The researches of a number of scientists, especially those of Robert Boyle of England with atmospheric pressure , of Otto von Guericke of Germany with a vacuum, and of the French Huguenot Denis Papin with pressure vessels, helped to equip practical technologists with the theoretical basis of steam power.

Distressingly little is known about the manner in which this knowledge was assimilated by pioneers such as Thomas Savery and Thomas Newcomen , but it is inconceivable that they could have been ignorant of it. His apparatus depended on the condensation of steam in a vessel, creating a partial vacuum into which water was forced by atmospheric pressure. Credit for the first commercially successful steam engine, however, must go to Newcomen, who erected his first machine near Dudley Castle in Staffordshire in It operated by atmospheric pressure on the top face of a piston in a cylinder, in the lower part of which steam was condensed to create a partial vacuum.

The piston was connected to one end of a rocking beam, the other end of which carried the pumping rod in the mine shaft. Newcomen was a tradesman in Dartmouth, Devon, and his engines were robust but unsophisticated. Their heavy fuel consumption made them uneconomical when used where coal was expensive, but in the British coalfields they performed an essential service by keeping deep mines clear of water and were extensively adopted for this purpose.

In this way the early steam engines fulfilled one of the most pressing needs of British industry in the 18th century. Although waterpower and wind power remained the basic sources of power for industry, a new prime mover had thus appeared in the shape of the steam engine, with tremendous potential for further development as and when new applications could be found for it. One cause of the rising demand for coal in Britain was the depletion of the woodland and supplies of charcoal, making manufacturers anxious to find a new source of fuel.

Of particular importance were experiments of the iron industry in using coal instead of charcoal to smelt iron ore and to process cast iron into wrought iron and steel. The first success in these attempts came in , when Abraham Darby , a Quaker ironfounder in Shropshire, used coke to reduce iron ore in his enlarged and improved blast furnace.

Other processes, such as glassmaking, brickmaking, and the manufacture of pottery, had already adopted coal as their staple fuel. Great technical improvements had taken place in all these processes. In ceramics , for instance, the long efforts of European manufacturers to imitate the hard, translucent quality of Chinese porcelain culminated in Meissen at the beginning of the 18th century; the process was subsequently discovered independently in Britain in the middle of the century.

Stoneware, requiring a lower firing temperature than porcelain, had achieved great decorative distinction in the 17th century as a result of the Dutch success with opaque white tin glazes at their Delft potteries, and the process had been widely imitated. The period from to witnessed a steady expansion in mining for minerals other than coal and iron.

The gold and silver mines of Saxony and Bohemia provided the inspiration for the treatise by Agricola, De re metallica , mentioned above, which distilled the cumulative experience of several centuries in mining and metalworking and became, with the help of some brilliant woodcuts and the printing press , a worldwide manual on mining practice.

Queen Elizabeth I introduced German miners to England in order to develop the mineral resources of the country, and one result of this was the establishment of brass manufacture.

This metal, an alloy of copper and zinc, had been known in the ancient world and in Eastern civilizations but was not developed commercially in western Europe until the 17th century. Metallic zinc had still not been isolated, but brass was made by heating copper with charcoal and calamine, an oxide of zinc mined in England in the Mendip Hills and elsewhere, and was worked up by hammering, annealing a heating process to soften the material , and wiredrawing into a wide range of household and industrial commodities.

Other nonferrous metals such as tin and lead were sought out and exploited with increasing enterprise in this period, but as their ores commonly occurred at some distance from sources of coal, as in the case of the Cornish tin mines, the employment of Newcomen engines to assist in drainage was rarely economical, and this circumstance restricted the extent of the mining operations.

Following the dramatic expansion of the European nations into the Indian Ocean region and the New World, the commodities of these parts of the world found their way back into Europe in increasing volume.

These commodities created new social habits and fashions and called for new techniques of manufacture. Tea became an important trade commodity but was soon surpassed in volume and importance by the products of specially designed plantations, such as sugar, tobacco, cotton, and cocoa.

Sugar refining, depending on the crystallization of sugar from the syrupy molasses derived from the cane, became an important industry. So did the processing of tobacco, for smoking in clay pipes produced in bulk at Delft and elsewhere or for taking as snuff. Cotton had been known before as an Eastern plant, but its successful transplantation to the New World made much greater quantities available and stimulated the emergence of an important new textile industry.

The woolen cloth industry in Britain provided a model and precedent upon which the new cotton industry could build. Already in the Middle Ages, the processes of cloth manufacture had been partially mechanized upon the introduction of fulling mills and the use of spinning wheels. But in the 18th century the industry remained almost entirely a domestic or cottage one, with most of the processing being performed in the homes of the workers, using comparatively simple tools that could be operated by hand or foot.

The most complicated apparatus was the loom , but this could usually be worked by a single weaver, although wider cloths required an assistant. It was a general practice to install the loom in an upstairs room with a long window giving maximum natural light. Pressures to increase the productivity of various operations had already produced some technical innovations by the first half of the 18th century.

It was not until the rapid rise of the cotton cloth industry that the old, balanced industrial system was seriously upset and that a new, mechanized system, organized on the basis of factory production, began to emerge. History of technology Article Media Additional Info. Article Contents. Load Previous Page. The emergence of Western technology — The technological history of the Middle Ages was one of slow but substantial development.

The Renaissance The Renaissance had more obviously technological content than the Reformation. The steam engine The researches of a number of scientists, especially those of Robert Boyle of England with atmospheric pressure , of Otto von Guericke of Germany with a vacuum, and of the French Huguenot Denis Papin with pressure vessels, helped to equip practical technologists with the theoretical basis of steam power.

Metallurgy and mining One cause of the rising demand for coal in Britain was the depletion of the woodland and supplies of charcoal, making manufacturers anxious to find a new source of fuel. Three methods of ventilating a mine, woodcut from De re metallica by Georgius Agricola, published Load Next Page.

Science and Technology in World History

In a wide array of courses, STSC students learn to think critically about questions such as: Why does modern science look the way it does? How and why do particular technologies and technological systems emerge, expand and become obsolete? How do science and technology sometimes exacerbate race, gender and class inequalities, and how might they be changed to reduce them? How do science and technology shape society, and how does society shape science and technology? The STSC major has an interdisciplinary methodology.

Arguably the best general history of science and technology ever published. Tracing the relationship between science and technology from the dawn of civilization to the early twenty-first century, James E. McClellan and Dorn identify two great scientific traditions: the useful sciences, which societies patronized from time immemorial, and the exploration of questions about nature itself, which the ancient Greeks originated. The authors examine scientific traditions that took root in China, India, and Central and South America, as well as in a series of Near Eastern empires in late antiquity and the Middle Ages. From this comparative perspective, McClellan and Dorn survey the rise of the West, the Scientific Revolution of the seventeenth century, the Industrial Revolution, and the modern marriage of science and technology. They trace the development of world science and technology today while raising provocative questions about the sustainability of industrial civilization. This new edition of Science and Technology in World History offers an enlarged thematic introduction and significantly extends its treatment of industrial civilization and the technological supersystem built on the modern electrical grid.

Now in its second edition, this bestselling textbook may be the single most influential study of the historical relationship between science and technology ever published. Tracing this relationship from the dawn of civilization through the twentieth century, James E. McClellan and Dorn identify two great scientific traditions: the useful sciences, patronized by the state from the dawn of civilization, and scientific theorizing, initiated by the ancient Greeks. They find that scientific traditions took root in China, India, and Central and South America, as well as in a series of Near Eastern empires, during late antiquity and the Middle Ages. From this comparative perspective, the authors explore the emergence of Europe and the United States as a scientific and technological power. The new edition reorganizes its treatment of Greek science and significantly expands its coverage of industrial civilization and contemporary science and technology with new and revised chapters devoted to applied science, the sociology and economics of science, globalization, and the technological systems that underpin everyday life. Science and Technology in World History.


Science and Technology in World History: An Introduction, by. James T. McClellan III and Harold Dorn. Baltimore, Maryland,. Johns Hopkins University Press.


Science, Technology and Society

If you have personal access to this content, log in with your username and password here:. For more information, view our Privacy Policy. Please accept our Terms and Conditions before using our website. Learn more. Join the Conversation.

Technology, science and knowledge are important in modern contemporary society. Essential questions include the following: How does science and technology produce new products, new ways of understanding, new ways of living and new institutions? Why is new technology and knowledge so fundamental to us in the ways through which we imagine the future? Technology, knowledge and science are fundamental in modern contemporary society.

The emergence of Western technology (1500–1750)

Journal of World History

Science, Technology, and Society in the Course Catalog. Science, Technology and Society STS is an interdisciplinary field that studies the conditions under which the production, distribution and utilization of scientific knowledge and technological systems occur; the consequences of these activities upon different groups of people. STS builds on the history and philosophy of science and technology, sociology and anthropology, policy studies, and cultural and literary studies; all of which shape the modes of analysis deployed in the field. The intercollegiate program brings together courses taught in a variety of departments, and is divided into three principal areas: history of science and technology, philosophy of science and technology, and social science approaches to technology and science. Courses explore the effects of science and technology on society and culture; the politics of socio-technical systems; science policy in national and international contexts; the social and environmental risks vs. Students majoring in STS are well prepared to pursue graduate study in related field and also have a solid foundation for work as science journalists, policy researchers and advisers, science educators, design and business consultants, and advocates of change around issues such as gender and science, renewable energy and the social effects of the information revolution.

By james e. Third edition. Baltimore, Md. By hanna hodacs.

Не нужно было так резко с ней говорить. Но у него не выдержали нервы. Он слишком долго говорил ей полуправду: просто есть вещи, о которых она ничего не знала, и он молил Бога, чтобы не узнала. - Прости меня, - сказал он, стараясь говорить как можно мягче.

Время от времени, когда надо было продлить членство в теннисном клубе или перетянуть старую фирменную ракетку, он подрабатывал переводами для правительственных учреждений в Вашингтоне и его окрестностях. В связи с одной из таких работ он и познакомился со Сьюзан. В то прохладное осеннее утро у него был перерыв в занятиях, и после ежедневной утренней пробежки он вернулся в свою трехкомнатную университетскую квартиру. Войдя, Дэвид увидел мигающую лампочку автоответчика.

Бринкерхофф растерянно заморгал.

1 Comments

  1. RenГ©e B. 09.05.2021 at 10:01

    Fashion 2 0 blogging your way to the front row pdf intelligence and electronic warfare operations pdf